
Latest developments with Pd-L2Ork and its Development Branch
Purr-Data

Ivica Ico Bukvic
Virginia Tech SOPA ICAT

DISIS L2Ork
Blacksburg, VA, USA 24061

ico@vt.edu

Jonathan Wilkes
jon.w.wilkes@gmail.com

Albert Gräf
Johannes

Gutenberg-University Mainz
IKM, Music-Informatics

Research Group
Mainz, Germany, 55122
aggraef@gmail.com

Abstract

In the following paper authors and co-maintainers
will present Pd-L2Ork and Purr-Data forks of
Pure-Data and Pd-extended, the motivation, and
unique features. Introduced in 2010 Pd-L2Ork as a
Linux-centric variant offers focus on improved us-
ability, including SVG-enabled canvas, and a grow-
ing set of built-in objects and externals designed to
lower the learning curve, facilitate rapid prototyp-
ing, and offer adaptable granularity. Purr-Data is
a recent development branch of Pd-L2Ork focusing
on a complete GUI rewrite and support for Win-
dows and OSX. It leverages Node-Webkit and its
unique affordances, enabling Pure-Data patches to
utilize highly efficient canvas and CSS.

Keywords

Pd-L2Ork, Purr-Data, fork, usability, L2Ork

1 Introduction

Pure-Data, also known as Pd, [19] is arguably
one of the most widespread audio and multime-
dia dataflow programming languages. Pd’s his-
tory is deeply intertwined with that of its com-
mercial counterpart, Cycling 74’s Max [20]. A
particular strength shared by the two platforms
is in their modularized approach that empowers
third party developers to extend software’s func-
tionality without having to deal with the under-
lying engine. Perhaps the most profound impact
of Pd is in its completely free and open source
model that has enabled it to thrive in a num-
ber of environments otherwise inaccessible to its
commercial counterpart. Examples include cus-
tom in-house solutions for entertainment software
(e.g. EaPd [16]), Unity3D [7] and smartphone
integration via libPD [8], an embeddable library
(e.g. RjDj [17], PdDroidParty [18], and Mobmu-
plat [15]), and other embedded platforms, such as

Raspberry Pi [10].

Pd’s author Miller Puckette has spearheaded a
steady development pace with the primary moti-
vation being iterative improvement while preserv-
ing the backwards compatibility and ability to run
even oldest of patches in a rapidly growing library
of community-generated creative code. Over the
past two decades, Pd underwent several growth
spurts. The earliest resulted in a rapid expansion
of the program’s functionality with a large number
of supporting libraries, a number of which have
delved in extending Pd’s core operation. Its un-
precedented popularity has challenged the evolv-
ing internal API with external library solutions
leveraging calls and functionalities that were not
in and of themselves finalized or deemed public.
With Max’s improved usability and a growing user
base, the Pd community sought to complement
Pure-Data’s compelling core functionality with a
level of polish that would lower the initial learning
curve and improve user experience. In 2002 the
community introduced the earliest builds of Pd-
extended [4], the longest running Pd variant that
was abandoned in 2013 due to lack of contribu-
tors to the project. Pd-extended is not the only
Pd variant. There were other ambitious attempts,
like pd-devel, Nova, and DesireData [5] that were
born out of desire for a more nimble development,
fundamental changes to the engine, and improved
usability.

In 2009 the community led by Hans Christoph
Steiner worked with Miller Puckette on refactoring
the GUI code that had become overly convoluted
and difficult to develop further. The rewrite was
an opportunity for a convergence between Pd and
Pd-extended. The effort was by and large success-
ful and perhaps in part served as a catalyst for
abandoning Pd-extended. Puckette’s work on Pd
continues to be instrumental in fostering creativ-

ity and curiosity across generations, and as the
library of works relying on Pd grows, so does the
importance of conservation and ensuring that Pd
continues to support even the oldest of patches.
This is where Puckette’s ongoing stewardship and
brilliance is indispensable. The inevitable side-
effect of the increasingly conservationist focus of
the core Pd is that any new addition has to be
carefully thought out in order to account for all
the idiosyncrasies of the past versions and ensure
there is a minimal chance of a regression. This
vastly limits the development pace. As a result,
in recent years Pd has seen a resurgence in forks
that aim to sidestep usability issues through alter-
native approaches, including embeddable solutions
(e.g. libPd) and custom front ends.

2 Motivation

Introduced in 2009 by Bukvic, Pd-L2Ork [9]
started as a Pd-extended variant that builds on
version 0.42.5 with a growing number of patches
submitted for upstream adoption. The focus
was on nimble development designed to cater to
the specific needs of the Linux Laptop Orchestra
(L2Ork), even if that meant suboptimal initial im-
plementations that would be ironed out over time
as the understanding of the overall code base im-
proved and the target purpose was better under-
stood through practice. A part of L2Ork’s mission
was educational outreach. Consequently, a ma-
jority of early additions to Pd-extended focused
on the usability improvements, including graph-
ical user interface and editor functions. While
some improvements were incorporated into the Pd
proper, a growing number of rejected patches be-
gan to build an increasing divide between the two
code bases. As a result in 2010 Bukvic intro-
duced a separately maintained Pd-extended vari-
ant named Pd-L2Ork after L2Ork for which it was
originally designed.

2.1 Philosophy

Pd-L2Ork’s philosophy grew out of its initial
goals and the early development efforts. It is de-
fined by a nimble development with focus on both
major and iterative code changes whose first and
foremost goal is to streamline behavior and im-
prove usability and stability as quickly as possi-
ble even if that means doing so at the expense
of backwards compatibility. Despite an ostensi-
bly lax outlook on backwards compatibility, to
date Pd-L2Ork remains fully backwards compati-

ble, and has over time included the “-legacy” flag
for changes that may be too disruptive to exist-
ing users, such as the repositioning of all iemgui
objects to reflect a consistent position in respect
to their x and y locations on the patch canvas.
Another important aspect of this philosophy is re-
leasing improvements early and often even if the
actual fix may not be optimal. Early on, such an
approach offered opportunities for better under-
standing of Pd’s internal code while having work-
ing iterations in the hands of dozens of students
of varying educational backgrounds and experi-
ence ensured quick vetting of the ensuing solutions.
In an attempt to minimize overhead in configur-
ing the programming environment, including in-
stalling supplemental libraries, and in part address
the potential for binary incompatibility with Pd,
Pd-L2Ork provides a single turnkey monolithic so-
lution with all the libraries included in one pack-
age.

Over time, as Pd-L2Ork grew in its scope
and visibility, it attracted other long-term co-
developers, co-maintainers, and community con-
tributors. In 2014 Wilkes joined Bukvic as a
co-developer. The same year Mathieu Bouchard
briefly joined the team and assisted in code refac-
toring, with particular focus on streamlining the
Tcl-C socket-based communication protocol. The
team was further complemented in 2015 by co-
maintainer and packager Gräf. The increasingly
team-based development became yet another pil-
lar of the Pd-L2Ork’s philosophy and the team
continues to openly invite others to contribute in
whatever capacity may be the most appropriate.

3 Implementation

Pd-L2Ork’s code base is increasingly divergent
with that of Pd. It consists of over 1,700 bug-fixes,
additions, improvements, and backports to the Pd-
extended code base which can be split into en-
gine, usability, documentation, new and improved
objects and libraries, and scaffolded learning and
rapid prototyping. The list below offers highlights
to some of the most obvious additions to each of
the said categories.

3.1 Engine

Internal engine contributions have largely fo-
cused on implementing features and bug-fixes re-
quested by past and existing Pd users. Some of
these include patches that have never made it to
the core Pd, such as the cord inspector (a.k.a.

magic glass), improved data type handling logic,
and support for outlier cases that may otherwise
result in crashes and unexpected behavior (e.g.
sending a signal which during execution changes
the number of sends it is trying to reach before
it has reached them all). Additional checks were
implemented for the Jack Audio Connection Kit
(JACK) [12] audio backend to avoid hangs in case
JACK freezes (e.g. when an external soundcard is
disconnected without closing JACK). Default sam-
ple rate settings are provided for situations where
Pd-L2Ork may run headless (without the Graph-
ical User Interface or GUI), so that objects that
depend on sample rate can properly initialize, thus
removing the need for potentially unwieldy head-
less startup procedures. Messages with the argu-
ment $0 now automatically resolve such value to
the patch instance, while the $@ argument can be
used to pass the entire argument set inside a sub-
patch or an abstraction. [trigger] logic has been
expanded to allow for static allocation of values,
which alleviates the need for creating bang triggers
that are fed into a message with a static value and
thereby considerably streamlines the patching pro-
cess.

From a visual perspective, the Tk-based [22]
graphical engine has been replaced with TkPath
[6] which offers SVG-enabled antialiased canvas.
While the ensuing GUI is less efficient than Tcl, in
part due to uncertain state of the TkPath develop-
ment, the internal engine changes offer accelerated
displacement and redraw of objects. A lot of effort
went into streamlining graph-on-parent (GOP), in-
cluding proper bounding box calculation and de-
tection, optimizing redraw, and resolving drawing
issues with embedded (GOP) patches. Consider-
able effort went towards implementing consistent
behavior. Improvements also focused on sidestep-
ping the limitations of the socket-based commu-
nication between the GUI and the engine, such
as keyboard autorepeat detection. As a result,
the [key] object can be instantiated with an op-
tional argument that enables autorepeat filtering,
while leaving the default object behavior back-
wards compatible.

Another substantial core engine overhaul per-
tains to consistent ordering of objects in the glist
(a.k.a. canvas) stack. Its implementation has
helped ensure that objects always honor the vi-
sual stacking order on top of each other, even af-
ter undo and redo actions. More importantly, it
has paved way towards more advanced functional-

ity including advanced editing techniques (see us-
ability below), and a system-wide preset engine.
The preset engine consists of two new objects [pre-
set_hub] and [preset_node]. Nodes can be con-
nected to various objects, including arrays, and
can broadcast current state to its designated hub
for storing and retrieval. Multiple hubs can be
used with varying contexts (defined using the op-
tional symbol argument). The state saving ref-
erences each object depending on its location in
the multidimensional stack with predictable ob-
ject positions. The ensuing system is universal,
unaffected by editing actions, abstraction- and
instance-agnostic (e.g. using multiple instances of
the same abstraction is automatically supported),
and efficient, allowing for anything from recording
individual states to real-time automation of mul-
tiple parameters through periodic snapshots.

Path detection and retrieval for patches, ex-
ternals, and abstractions has been expanded to
improve Pd-L2Ork’s ability to locate necessary
files. The file path finding logic has been enhanced
with universal prefixes, like the @pd_extra and
@pd_help that autoresolve to extra and doc fold-
ers.

Data structures were also enhanced with the
addition of sprites and new ways to manipulate
said data. As a result, Pd-L2Ork ships with a
game/tutorial designed by Wilkes where the user
can navigate the patch with a virtual character
who can interact with various objects and by doing
so learn the basics of Pd programming language.

3.2 Usability

On the surface Pd-L2Ork builds on Pd-
extended’s appearance improvements. Under the
hood, with the canvas being drawn as a collection
of SVG shapes, the entire ecosystem lends itself
to a number of new opportunities. The most ob-
vious involve antialiased display, advanced shapes
(e.g. Bézier curves that are also used for drawing
patch cords), support for image formats with alpha
channel (e.g. PNGs), and advanced data structure
drawing and manipulation using SVG-centric en-
hancements.

A majority of usability improvements focus on
the editor. The consistent stacking order imple-
mented in the engine has served as a foundation
for the infinite undo, as well as to-front and -
back stacking options that are accessible via the
right-click context menu. Iemgui objects’ posi-
tions have been updated to ensure consistent be-

havior, namely accurate reflection of x and y val-
ues and consistent autopatching object placement.
In addition, their size, display font, and label po-
sition were made editable through the GUI with
the properties dialog values reflecting GUI-edited
changes on-the-fly. Their redrawing was optimized
and GOP visibility conditions updated to factor in
labels. GOP window size and position were simi-
larly retrofitted to support GUI-based adjustments
and many of the supporting dialogs were stream-
lined and improved, including iemgui properties
window and the color picker. Iemgui labels na-
tively support spaces and comments provide grace-
ful handling of line breaks that are also saved in
backwards-compatible Pd files. Pd-L2Ork has in-
tegrated the old autotips patch and improved upon
its design. The “tidy up” feature has been re-
designed to offer a two-step realignment of objects.
The first key press aligns the objects on a sin-
gle axis, while the second respaces them, so that
they are equidistant from each other. Intelligent
patching was implemented to provide four variants
of automatically generating multiple patch cords
based on user’s selection, and to provide additional
ways of creating multiple connections (e.g. SHIFT
+mouse click). The canvas scrolling logic has been
overhauled to minimize the use of scrollbars, pro-
vide minimal visual footprint, and ensure most of
the patch is always visible. Pd-L2Ork supports
drag and drop, as well as preliminary support for
pasting script code snippets directly onto the can-
vas. Its documentation browser has been enhanced
to support xapian-enabled searching by keywords,
as well as annotated navigation of folders and sup-
porting libraries. To minimize confusion in run-
ning multiple concurrent instances, Pd-L2Ork in-
troduces the “-unique” startup flag which is by de-
fault disabled and whose purpose is to explicitly
specify that a new instance should be spawned.
This is particularly useful when opening multiple
patches from a file browser, thus preventing redun-
dant spawning of multiple instances every time a
new file is opened. The copy and paste engine has
been overhauled to improve buffer sharing across
multiple applications. The entire graphics engine
has been made themeable and its settings are by
default saved with the rest of the configuration
files.

A part of the usability improvements also in-
cluded the K12 mode (a.k.a. module) [11] accessi-
ble via the “-k12” startup flag. This education-
centric mode designed specifically for beginners

and children offers its own improvements to the
user interface, including a sidebar with object but-
tons that is split into two tabs or categories (con-
trol and sound), and a simplified menu and re-
duced set of options. The ensuing patches can be
transported seamlessly between the K12 and de-
fault (advanced) modes allowing for Pd-L2Ork to
“grow” in its complexity in sync with user’s profi-
ciency. We will discuss the K12 mode in greater
detail in the Scaffolded Learning section below.

3.3 Documentation

Pd-L2Ork continues to build on the Pd-
extended documentation efforts. This includes
over 200+ new and updated help files, including
the cyclone library documentation. In addition,
the K12 library offers a comprehensive documen-
tation of its own, including a growing number of
example patches. All of the new help files pro-
vide supporting meta info contained within the
META subpatch that is also used by the autotips,
thereby enabling easier prototyping of abstractions
and documentation.

3.4 New and Improved Objects, Abstrac-
tions, and Libraries

Apart from the core Pd objects and improve-
ments described in the Engine section above, in-
cluding [trigger], [preset_hub], [preset_node], and
[key], Pd-L2Ork offers a growing number of re-
vamped objects while also pruning redundant and
unnecessary objects. By doing so, its long term
aspirational goal is to co-locate all the objects in
a single folder and thereby abandon the subfolder
structure for external libraries altogether.

Special attention was given to supporting the
Raspberry Pi (RPi) platform with a custom set
of objects designed specifically to harness the
full potential of the RPi GPIO and I2C inter-
faces, including [disis_gpio] and [disis_spi] [10].
The cyclone library has received new documenta-
tion and a growing number of bugfixes and im-
provements. The [coll] object, for example, now
offers threaded file reading and writing to pre-
vent potential sample drops when used in com-
plex patches on a low power hardware. Ggee
library’s [image] has received a significant over-
haul and became the catchall solution for im-
age manipulation, including accelerated displace-
ment, support for file formats with alpha chan-
nel (e.g. PNGs), and size reporting. In addi-
tion to the standard Pd-extended libraries, Pd-

L2Ork has reintroduced the flext library with
[disis_munger~] and an upgraded version of the
[fluid~] soundfont synth external. Other libraries
include fftease, lyonpotpourri, and RTcmix~. Pd-
L2Ork bundles advanced networking externals [di-
sis_netsend] and [disis_receive], convenience ex-
ternals, like [patch_name], and abstractions (e.g.
K12 and a growing number of L2Ork-specific ab-
stractions designed to foster rapid prototyping).
A few libraries have been removed due to lack of
support and/or GUI object implementations that
utilize hardwired Tcl-specific workarounds.

Most interpreted languages have mechanisms
to do introspection. Pd-L2Ork features a collec-
tion of “info” or introspection classes for retrieving
the state of the program on a number of levels,
from the running Pd instance to individual ob-
jects within patches. Four classes provide the basic
functionality:

• [pdinfo] reflects the state of the running
Pd instance, including dsp state, avail-
able/connected audio and midi devices, plat-
form, executable directory, etc.

• [canvasinfo] is a symbolic receiver for the
canvas, abstraction arguments, patch file-
name, list of current objects, etc. The object
takes a numeric argument to query the state
of parent or ancestor canvases.

• [classinfo] offers information about the cur-
rently loaded classes in the running instance.
This includes creator argument types, as well
as the various methods.

• [objectinfo] returns bounding box, class
type, and size for a particular object on the
canvas.

While the introspection provided by these
classes is relatively rudimentary, it alleviates the
need for a large number of external libraries that
add missing core functionality. For example, Pd-
L2Ork ships with several compiled externals whose
purpose is to fetch the list of abstraction argu-
ments. These externals all have different interfaces
and are spread across various libraries. Having
an interface for fetching arguments that behaves
similarly to other introspection interfaces improves
the usability of the system. Furthermore, opening
up rudimentary introspection to the user increases
the composability of Pd. Functionality that pre-
viously only existed inside the C code can now

be pushed to an abstraction, or to a collection of
abstractions. Because abstractions don’t require
compilation and are written in Pd, they are more
accessible to a wider number of users to test and
improve them.

With L2Ork’s focus on Wiimote devices as the
primary ensemble controllers, Pd-L2Ork has fur-
thered the development of the libcwiid that is pro-
vided as a custom fork with the most comprehen-
sive support for Wii devices on Linux, including
interleaved mode and a more recent variant of the
Wii Motion Plus. Similarly, TkPath included with
Pd-L2Ork is a fork of what appears to be an aban-
doned library that includes several bug fixes and
improvements.

3.5 Scaffolded Learning and Rapid Proto-
typing

Figure 1: Pd-L2Ork K12 mode.

In 2011 Pd-L2Ork introduced a K12 learning mod-
ule (Fig.) [11]. Embedded as a startup “-k12” op-
tion that modifies the user interface to address the
needs of beginners and particularly young learn-
ers, the K12 module offers a collection of abstrac-
tions that encapsulate common functionality and
thereby empowers users to quickly prototype an
interactive sound-making instrument. Initially the
external device support focused solely on the Wi-
imote family of controllers. Since its introduction
it has been implemented in dozens of Maker-like
experiences targeting various age groups [21]. As
a result, its functionality was extended to support
Arduino and eventually Raspberry Pi [10]. A fur-
ther simplified K12 module variant was also used
for a community-building 50 RPi installation ti-
tled Cloud [3] where community participants were
given an opportunity to program the behavior of
individual “cloudlets” in under an hour. In 2014,
the K12 module was used for a gifted summer pro-
gram where middle- and high-school students pro-
grammed and eventually performed in a Raspberry

Pi Orchestra. Most recently, we’ve begun experi-
menting with Pd-L2Ork and the K12 module as a
rapid prototyping platform in robotics scenarios.
This continues to be one of the primary thrust ar-
eas of both L2Ork and Pd-L2Ork.

3.6 Limitations

Apart from the ongoing need for further improving
documentation and expanding its features, per-
haps Pd-L2Ork’s greatest limitation is its focus on
the Linux platform. With its increased visibility,
there was a growing community interest to support
other platforms, namely Windows and OSX. The
TkPath toolkit, however, lacks Windows support.
As a result, there was a need for yet another GUI
rewrite. This time its focus required a platform-
agnostic solution.

4 Purr-Data Development Branch

The Tcl/Tk toolkit severely limits how usable Pd
can be. Tk has no native notion of a hyperlink. It
has no easy, deterministic way to separate autore-
peat key presses from manual keypress. There is
no easy way to use non-system fonts, no support
for theming or native dialogs under GNU/Linux,
and little default support for many of the common
image formats.
When taken separately, each example above could
be worked around given a few hours or days of
clever playfulness. When taken as a whole, how-
ever, all the workarounds necessary to make Tk
both responsive and usable across OSX, Windows,
and GNU/Linux become too burdensome for a
small or even medium-sized graphical free soft-
ware community. Another, more modern toolkit
is needed.
Tcl commands with Tk window strings are hard-
coded into the C source files of Pd. This means
that any port to a different toolkit must either re-
place those commands with an abstract interface,
or write middleware that turns the hard-coded Tcl
strings into abstract commands. Given the com-
plexity of Tcl commands in both the core and ex-
ternal libraries, that middleware would essentially
have to re-implement a large part of the Tcl in-
terpreter. Consequently, Purr-Data opted for the
former approach of directly implementing an ab-
stract interface.
Adding to the porting difficulty is the fact that Pd
has no formal specification, and its GUI interface
follows no common design pattern for 2D graphics.
For example, the GOP window appears at a glance

as a viewport that clips to a specified bounding
box. However, the bounding box itself behaves
inconsistently–for built-in widgets like [hslider] or
[bng] it clips (per widget, not per pixel), but for
graphed arrays, data structure visualizations, and
widget labels it does no clipping at all.
For this reason, Purr-Data uses a GUI toolkit
called nw.js that allows the Pd canvas to be drawn
and manipulated using the HTML5 API. Since the
HTML5 API is a widely documented and used,
there is an enormous pre-existing knowledge and
developer base for it. Furthermore, the code to
display Pd patches in HTML5 will work in any
modern GUI toolkit that has a webview widget.

4.1 Pd Canvas as SVG

Purr-Data implements a Pd canvas as an SVG doc-
ument. SVG was chosen because it is a mature,
widely-used 2D API. Unlike HTML5 canvas, larger
canvas sizes have little to no performance im-
pact on the responsiveness of the graphics. Since
Pd users sometimes employ unusually large logi-
cal canvas sizes, this responsiveness makes SVG
a better choice for drawing a Pd canvas than the
HTML5 canvas API.

4.2 Leveraging the SVG Spec to Improve
Pd Data Structures

Purr Data includes a large number of improve-
ments to data structure visualization. In order to
achieve this, a small subset of the SVG specifica-
tion was used.
Inheriting from a pre-existing standards-based 2D
API has several advantages over an ad-hoc ap-
proach. First, if implemented consistently, the ex-
tant documentation can be used to test and teach
the system. Second, it is not necessary to imme-
diately understand all the design choices of the
entire specification in order to implement parts of
it. Since those parts have been used and tested in
a variety of mature applications, it makes it easier
to avoid design mistakes that might otherwise be
likely for someone who isn’t a 2D graphics expert.
Finally, there is less risk of a standards-based API
becoming abandoned than a more esoteric API.
To improve data structure visualizations, several
[draw] commands were added which map to
the basic shape/object types in SVG: there is
[draw circle], [draw ellipse], [draw rect], [draw
line], [draw polyline], [draw polygon], [draw
path], [draw image], and [draw group]. [draw
text] has not been implemented yet. Each has

a number of methods which map directly to
SVG graphical attributes. Methods were also
added for Document Object Model (DOM)
events to trigger notifications to the outlet of
each object. Unfortunately, Pd has no easy
way to put key/value pairs in messages, so the
outlet gives a message with positional arguments.

Figure 2: Purr-Data patch with a com-
plex interactive SVG data structure.

The screenshot in Fig.1 shows the famous “SVG
tiger” drawn from a few hundred paths found in-
side the [draw group] object. Even though the
drawing is complex, Purr-Data caches the bound-
ing box for the tiger object to prevent the hit-
testing from causing dropouts. One can mouse
over the tiger and trigger real-time audio synthe-
sis.

5 Observed Impact

Pd-L2Ork has seen international adoption among
other laptop ensembles, in curricula, and a growing
number of outreach initiatives, including Maker
camps, workshops, gifted programs. In 2010,
L2Ork has formed a long-term partnership with
a regional Boys & Girls Club of Southwestern Vir-
ginia where a number of initiatives of this kind
have taken place. It has also helped start over
half-dozen other similar initiatives across North
and South Americas. The partnership with the
regional Boys & Girls Club also served as the foun-
dation for the initial exploratory study of the K12
module. Pd-L2Ork has been instrumental in en-
suring L2Ork’s recognition. In 2014 L2Ork was
named as one of the top eight research projects

at Virginia Tech [1] and in 2015 as one of the top
six national transdisciplinary exemplars among re-
search institutions [2]. With the prospect of cross-
platform support, Pd-L2Ork is increasingly seen
by some as Pd-extended’s spiritual successor.
Since 2012, Pd-L2Ork is also being used exten-
sively for teaching computer music courses at the
Computer Music Research Group of the Johannes
Gutenberg University (JGU) in Germany. The
main reasons for switching from the vanilla and
extended flavors of Pd initially were the GUI im-
provements (especially the ability to configure GUI
objects and graph-on-parent patches in a graphi-
cal way) and the infinite undo capability, which
make Pd-L2Ork much easier to use for beginners.
On the other hand, one obstacle with Pd-L2Ork
was that it required Linux, which hampered adop-
tion by students (who, at least at the JGU, are
often using Mac and Windows systems as their
daily platform). But this is about to change now
with the advent of Purr-Data.

5.1 Availability

Because of Pd-L2Ork’s addons and its comprehen-
sive set of bundled externals, the software has a
lot of dependencies and a fairly complicated (and
time-consuming) build process. So, while the soft-
ware can be built straight from the source (which is
best done using the included tar_em_up.sh build
script located in the l2ork_addons subfolder), it
is much easier to use one of the available binary
packages:

• Virginia Tech’s official Pd-L2Ork packages
are available at http://l2ork.music.
vt.edu/main/make-your-own-l2ork/
software/, and

• Jonathan Wilkes’ Purr-Data packages
can be found at https://git.purrdata.
net/jwilkes/purr-data-binaries/tree/
master.

In addition, at the JGU we have created a Debian
source package which can be used to build pack-
ages for all recent Ubuntu releases on both 32 and
64 bit architectures, along with a Makefile which
fully automates the build process and also makes
it easy to roll your own packages from current git
sources. This build system is available in the de-
build subfolder of the Pd-L2Ork and Purr-Data
git repositories. Corresponding binary packages
can be found on Launchpad. As of summer 2016,

http://l2ork.music.vt.edu/main/make-your-own-l2ork/software/
http://l2ork.music.vt.edu/main/make-your-own-l2ork/software/
http://l2ork.music.vt.edu/main/make-your-own-l2ork/software/
https://git.purrdata.net/jwilkes/purr-data-binaries/tree/master
https://git.purrdata.net/jwilkes/purr-data-binaries/tree/master
https://git.purrdata.net/jwilkes/purr-data-binaries/tree/master

these are also linked to from the Pd-L2Ork web-
site as the default Linux packages. In a similar
vein, we also support Arch Linux and its deriva-
tives by means of corresponding package builds in
the Arch User Repositories, as well as a binary
package repository hosted on Bitbucket. More in-
formation about these, including pointers to the
Ubuntu PPAs, binary Pacman repositories and
bug trackers for reporting packaging issues, can be
found at http://l2orkubuntu.bitbucket.org/
and http://l2orkaur.bitbucket.org/, respec-
tively. In the future, we also plan to improve sup-
port for recent OSX versions by creating a similar
MacPorts package.
The above repositories also contain Pd-L2Ork ver-
sions of JGU’s Faust and Pure externals that allow
for running signal processors written in Grame’s
Faust and JGU’s Pure programming languages
[14] [13]. These enable you to program your own
Pd externals in a high-level, functional program-
ming language. Faust is tailored for creating au-
dio effect and instrument plug-ins, while Pure is
a general purpose language geared more towards
advanced symbolic processing of control messages.
Both are well-integrated in the Pd environment
and support an interactive (live-coding) develop-
ment style, since Faust and Pure modules can
be reloaded dynamically while the patch keeps
running. Please note that these extensions re-
quire an installation of the Pure runtime environ-
ment, which is readily available through a separate
Ubuntu PPA and the Arch User Repositories; de-
tailed instructions can be found under the links
provided above.

6 Future Work

Following the stable release of the cross-platform
version tentatively scheduled for the winter 2016
(Purr-Data is currently in beta), Pd-L2Ork’s
roadmap includes continued improvement of pro-
gram’s usability, consolidation of externals and li-
braries, and the pursuit of the remaining bugs. In
addition, the team would like to work on design-
ing libPd-L2Ork and streamlining the Pd-L2Ork
to libPd-L2Ork pipeline, as well as continue to de-
velop frameworks for the embedded scenarios and
recently established thrust areas, such as RPi and
robotics.
With the imminent expansion onto other plat-
forms, Pd-L2Ork’s key challenge is ensuring sus-
tainable growth. This can be achieved through fos-
tering greater community participation in its de-

velopment and maintenance, as well as in securing
necessary resources. If interested in contributing
to the project regardless of the aspirational capac-
ity please do not hesitate to contact us.

7 Acknowledgments

The authors would like to thank the original
Pd author Miller Puckette, numerous community
members who have complemented the Pd ecosys-
tem with their own creativity and contributions,
including Hans Christoph Steiner and Mathieu
Bouchard. We would also like to thank the L2Ork
sponsors and stakeholders without whose support
Pd-L2Ork would have never been possible nor sus-
tainable.

References

[1] 8 Awesome Research Projects At
Virginia Tech, One Of The Top
R&D Institutions In The U.S.
http://dcist.com/2014/11/8_awesome_res
earch_projects_at_virg.php.

[2] a2ru Selects Transdisciplinary Exemplars
for the 2015 a2ru National Conference.
http://a2ru.org/knowledgebase/a2ru-selects-
transdisciplinary-exemplars-selected-for-the-
2015-a2ru-national-conference/.

[3] Cloud | Ivica Ico Bukvic.
http://ico.bukvic.net/main/cloud/.

[4] [PD-announce] MacOSX installers for pd 0.36
and pd 0.36 extended (CVS).

[5] pd forks WAS : Keyboard short-
cuts for "nudge", "done editing".
http://permalink.gmane.org/gmane.comp.mu
ltimedia.puredata.general/79646.

[6] TkPath. http://tclbitprint.sourceforge.net/.

[7] Unity - Game Engine. https://unity3d.com.

[8] P. Brinkmann, P. Kirn, R. Lawler, C. Mc-
Cormick, M. Roth, and H.-C. Steiner. Em-
bedding pure data with libpd. In Proceedings
of the Pure Data Convention, volume 291.
Citeseer, 2011.

[9] I. Bukvic, T. Martin, E. Standley, and
M. Matthews. Introducing L2ork: Linux Lap-
top Orchestra. In Interfaces, pages 170–173,
2010.

http://l2orkubuntu.bitbucket.org/
http://l2orkaur.bitbucket.org/

[10] I. I. Bukvic. Pd-L2ork Raspberry Pi Toolkit
as a Comprehensive Arduino Alternative in
K-12 and Production Scenarios. In NIME,
pages 163–166, 2014.

[11] I. I. Bukvic, L. Baum, B. Layman, and
K. Woodard. Granular Learning Objects for
Instrument Design and Collaborative Perfor-
mance in K-12 Education. In New Interfaces
for Music Expression, pages 344–346, Ann
Arbor, Michigan, 2012.

[12] P. Davis and T. Hohn. Jack audio connection
kit. In Proc. Linux Audio Conference, LAC,
volume 3, pages 245–256, 2003.

[13] A. Gräf. Signal Processing in the Pure Pro-
gramming Language. In Proceedings of the 7th
International Linux Audio Conference, pages
137–144, Parma, 2009. Casa della Musica.

[14] A. Gräf. Pd-faust: An integrated environ-
ment for running Faust objects in Pd. In Pro-
ceedings of the 10th International Linux Au-
dio Conference, pages 101–109, Stanford Uni-
versity, California, US, 2012. CCRMA.

[15] D. Iglesia. MobMuPlat (iOS application).
Iglesia Intermedia, 2013.

[16] K. Jolly. Usage of pd in spore and darkspore.
In PureData Convention, 2011.

[17] J. Kincaid. RjDj Generates An Awe-
some, Trippy Soundtrack For Your Life.
http://social.techcrunch.com/2008/10/13/rjd
j-generates-an-awesome-trippy-soundtrack-
for-your-life/.

[18] C. McCormick, K. Muddu, and A. Rousseau.
PdDroidParty-Pure Data patches on Android
devices. Retrieved January, 21, 2014.

[19] M. Puckette. Pure data: another integrated
computer music environment. In Proceed-
ings, International Computer Music Confer-
ence, pages 37–41, 1996.

[20] M. Puckette. Max at seventeen. Computer
Music Journal, 26(4):31–43, 2002.

[21] B. Sawyer, J. Forsyth, T. O’Connor, B. Bortz,
T. Finn, L. Baum, I. I. Bukvic, B. Knapp,
and D. Webster. Form, function and per-
formances in a musical instrument MAKErs
camp. In Proceeding of the 44th ACM tech-
nical symposium on Computer science educa-
tion, SIGCSE ’13, pages 669–674, New York,
NY, USA, 2013. ACM.

[22] B. B. Welch. Practical programming in Tcl
and Tk, volume 3. Prentice Hall Upper Sad-
dle River, 1995.

	1 Introduction
	2 Section
	2.1 Subsection
	3 Section
	3.1 Subsection
	3.2 Subsection
	3.3 Subsection
	3.4 Subsection
	3.5 Subsection
	3.6 Subsection
	4 Section
	4.1 Subsection
	4.2 Subsection
	5 Section
	5.1 Subsection
	6 Section
	7 Section

