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ABSTRACT 

Object-oriented rapid prototyping tools geared towards 
multimedia, such as Max/MSP/Jitter and Pd/Gem, serve as 
a powerful foundation for efficient multimodal cross-
pollination and integration. Although both Max and Pd 
support OpenGL, the lack of scalability, user-friendly 3D 
editor, and physics engine makes them less desirable 
solutions for the rapid development of complex 
environments and physics simulations. Unity3D is a 
powerful rapid 3D video game prototyping platform with 
an integrated physics engine. Its audio capabilities, 
however, are limited mainly to triggering and spatialization 
of audio buffers. µ is a toolkit offering easy integration of 
Max/PD with Unity3D, allowing for exchange of control 
data, as well as importing of dynamic Jitter textures into 
Unity3D. The former makes it particularly suitable for 
efficient sonification of physics simulations. µ has been 
utilized in Elemental, an interactive communal soundscape 
installation (part of the Revo:oveR exhibit) allowing for 
visitors’ motion (Max) to drive a physics engine (Unity3D) 
and sonify ensuing data across a 12-channel ceiling-
mounted speaker array (Max). 

1. INTRODUCTION 

The increase in processing power and affordability of 
computing devices has ushered a revolution of rapid 
software prototyping tools. Through the use of a library of 
shortcuts tailored towards a specific set of tasks, such 
development environments offers unprecedented efficiency. 
In the audio domain, arguably even the earliest tools, such 
as the Music-N languages [7], have been designed with the 
rapid prototyping concept in mind. More recently, a 
number of the existing software, such as CMix [9] and 
Csound [13] has been retrofitted to offer real-time 
capabilities [6]. They have been further complemented by 
visual programming environments, such as Pure Data (Pd) 
[11] and Max [5]. 

One of the main challenges associated with the rapid 
prototyping tools is that their efficiency quickly dissolves 
once a task at hand delves beyond their primary focus (e.g. 
an audio project that utilizes visuals). Over the years we’ve 
seen two approaches to solving this predicament: software 
such as Max and Pd embracing new functionality (Jitter 

and Gem respectively) to expand their applicable domain, 
and software [3] or libraries [15] offering interoperability 
between two or more complementing prototyping 
environments. Both approaches come with a set of 
advantages and limitations: while inclusion of Jitter in Max 
has paved way towards efficient integration of audio and 
visuals in artistic and research contexts [4,14], its 
implementation of OpenGL layer in particular lacks key 
components of contemporary 3D engines, such as 
scalability, support for animated content, user-friendly 3D 
scene editing, and an efficient, easy to use physics engine. 
In our recent research, the physics engine had proven a 
particularly desirable component for a number of audio-
oriented scenarios. Equally, tools designed to bridge 
different rapid prototyping environments commonly 
require more complex setups (e.g. two applications 
running concurrently on the same machine) whose 
synchronization and load balancing at times can be 
difficult to achieve, thus resulting in a greater number of 
possible points of failure in a production environment. 

Unity3D [12] is a powerful cross-platform gaming 
engine integrated into a rapid prototyping environment. Its 
versatility as a visual tool is however hampered by the use 
of a relatively simple audio engine limited to triggering 
and spatialization of preloaded audio buffers. While 
working on a series of prototypes dealing with sonification 
of moderately complex 3D physics simulations, we 
identified a need for an efficient way to complement Max 
with Unity3D and consequently generate a composite rapid 
prototyping environment capable of efficiently tackling 
said scenarios. This interest was further warranted by the 
fact that Unity3D, like Max, is capable of generating Mac 
and Windows standalone executables, thus minimizing 
potential production-level overhead. 

2. INTRODUCING µ 

µ is a Max-Unity3D interoperability toolkit consisting of 
C/C# code (Unity3D) and Max patches offering near 
seamless integration between the two environments using 
TCP/IP protocol. The 1.00 release relies upon the 
netsend/netreceive [10] third-party Max externals for 
bi-directional messaging and the jit.net.send Max 
object for relaying texture data. µ offers following 
features: 



  
 

 
Max Unity3D 
• Built-in functions using Max message formats, 

offering Unity3D object search and basic 
manipulation (move, rotate, and scale; relative 
(lowercase) and absolute (uppercase)). For instance, 
cube1 r 0 10 0 seeks object named cube1 and rotates 
it 10 degrees around the y-axis. 

• Custom object-specific functions (provided as 
placeholders for custom code), such as changing 
object color, transparency, animation, physical 
properties, etc. 

• Importing texture data as a 4-plane char matrix 
(ARGB with 8 bits per color channel) and applying it 
to a Unity3D object (Fig.1). 

 

 
Figure 1. Max texture imported into Unity3D via µ. 

Unity3D Max 
• Custom object-specific data (provided as placeholders 

for custom code), such as state, position, speed, etc. 
This is particularly useful in 3D physics simulations 
where object properties can be fed back into the audio 
engine. 

 
By coupling Max with Unity3D’s powerful API µ 

aims to broaden rapid prototyping domain of both tools to 
include a wide array scenarios, including physical 
simulations (objects’ movement and interaction with other 
assets and surfaces can be accompanied with sound cues 
spatialized across an array of speakers), complementing 
aural with complex 3D content (audio-visual installations), 
games requiring advanced DSP features of Max and/or 
where visuals are driven by audio (e.g. Audiosurf [1]), and 
projects dealing with the cross-pollination of rich dynamic 
aural and visual content. 

3. PERFORMANCE 

Given that one of µ’s primary goals was to complement 
Max with Unity3D’s ability to efficiently manipulate large 
number of assets and more importantly do so while 

ensuring that all messages will arrive at their destination, 
we settled for the TCP protocol. The UDP approach 
proved too unwieldy for this purpose, requiring that each 
network packet contain the state of all assets in the scene 
to minimize sync issues associated with potential network 
packet loss. Otherwise, critical one-time triggers contained 
within a single UDP packet (e.g. a climactic moment in an 
interactive installation driven by a single networked 
command) could be entirely lost. From a texture streaming 
perspective, considering that the jit.net.send object 
supports only TCP protocol, such choice also 
circumvented a need to design custom Max external. Thus, 
even with a greater CPU and network overhead the TCP 
approach proved a simpler solution, ensuring that each 
packet would contain only the information of assets whose 
states needed change (Max Unity3D) or had just changed 
(Unity3D Max). The fact that the µ utilizes network 
protocol has also allowed for the system to run on two or 
more computers without requiring their co-location. 

In order to assess the CPU overhead induced by µ we 
compared average CPU utilization of both Max and 
Unity3D at runtime with µ communication enabled and 
suspended. No manual load balancing was employed and 
since both clients were configured to run on a single CPU 
core, no OS-specific multi-core optimizations had any 
observable impact on their CPU load distribution. All tests 
were run on a G5 with dual Intel Xeon 2.67GHz. 

 

 
Figure 2. µ’s CPU overhead for Max and Unity3D. 

The bi-directional communication of control data is 
formatted as netsend/netreceive space-delimited 
character array that is parsed into object names (String), 
one-letter commands, integers, floats, and/or other relevant 
data formats as defined in the custom commands. At 400 
messages per second the measured CPU overhead of both 
applications combined rarely exceeded 10% (Fig.2). 

From a performance perspective, perhaps one of the 
most interesting aspects of µ is its ability to relay texture 
data in Jitter matrix format to Unity3D. An example 
included with the toolkit offers mapping processed video 
and/or webcam texture data onto a Unity3D asset, in this 
case a cube (Fig.1). Although uncompressed texture data is 
bandwidth intensive, tests with either both clients on the 



  
 

same machine or on two separate machines on a local area 
network using Gigabit Ethernet have shown stable 
operation for textures up to 1024x1024 at 25 frames per 
second albeit with a considerable CPU load (50+% per 
application). 256x256 textures had a considerably lower 
CPU footprint at 6-7% per application (Fig.2) with no 
noticeable deterioration in image quality, making it an 
adequate solution for common scenarios. 

4. ELEMENTAL 

 
Figure 3. Screenshot of the Elemental tech setup. 

µ’s first real-world test was its integration in the 
Elemental (Fig.3) interactive communal soundscape 
installation (part of the Revo:oveR exhibit) that opened in 
November 2008 at the new Taubman Museum of Art in 
Roanoke, Virginia (USA). The piece uses series of 
infrared (IR) LED floodlights in conjunction with a 
homebrew ceiling-mounted IR webcam to concurrently 
monitor motion of every visitor populating the exhibit 
space. The resulting data is fed into a physics engine and 
used to spawn 3D spheres within a virtual rendition of the 
exhibit space, in locations corresponding to visitor’s real-
world position. Based on the visitors’ motion spheres are 
assigned speed, trajectory, and inertia parameters and are 
set in motion resembling simplified particle simulation of 
water ripples. These meta-particles behave in many ways 
as their real-world counterparts, reflecting from the walls 
and other obstacles, as well as colliding with each other 
until they exhaust all of their kinetic energy. The sphere 
position and collision events are then forwarded to an 
audio engine that sonifies them across a 12-channel 4x3 
ceiling-mounted speaker array. The sphere position is 
marked by a sound of a water ripple, its reflection against 
the walls by a water splash, while its interaction with 
other spheres is accompanied by an “aural fireworks” 
consisting of an algorithmically-generated consonant 
swarm of pitches with pizzicato-like envelopes. The 
resulting interactive soundscape paints a picture of 
communal dynamics in the exhibit space marking points 

where trajectories of individuals may already have or are 
about to converge. 

Given the task at hand, µ proved an ideal solution for 
cross-pollinating motion tracking via webcam (Max), 
using visitor trajectories to run a physics simulation 
through an efficient 3D engine (Unity3D), and finally 
sonifying the resulting data across the 12-channel 4x3 
ceiling-mounted speaker array (Max). While Unity3D’s 
3D capabilities were secondary to the task, the fact we 
could easily visualize and therefore troubleshoot the 
system’s behaviour had proven instrumental in fostering 
time-efficient development. The installation was 
optimized to run on a single Intel Core 2 Duo 2.67GHz 
machine non-stop for the duration of the exhibit 
(approximately 5 months). Apart from a few occurrences 
of seemingly random errors we traced down to the 
netsend/netreceive external objects, the installation 
has been running for several months without interruption. 

5. LIMITATIONS 

The CPU overhead for large textures is currently one of 
µ’s greatest bottlenecks and in this respect µ is unable to 
scale well, particularly in situations where multiple 
dynamic video streams are to be used within the same 3D 
scene. Alternatives include shared memory model that 
would circumvent the TCP/IP stack overhead however 
requiring that both clients run on the same system, and/or 
the development of a framework for relaying a 
compressed video stream, thus retaining the ability to 
interface across the network. 

As any bridging toolkit, µ is susceptible to 
fluctuations and peculiarities of environments it interfaces 
with. In our testing we’ve identified a number of 
inconsistencies, many of which were traced down to the 
video card driver issues. 

Considering that Windows video drivers provide 
much better support of Direct3D than OpenGL, Unity3D 
on Windows platform by default relies upon the Direct3D. 
Yet, the Unity3D’s C plug-in architecture as of version 
2.1 does not provide means of exposing texture data 
pointers to the DirectX library, making it difficult to 
update game engine texture with networked data through 
optimized plug-ins. Possible workarounds for Windows 
users include running Unity3D in OpenGL mode and thus 
dealing with possible visual artefacts due to inadequate 
driver support, or manipulating texture updates using 
Unity3D’s API at the expense of noticeably higher CPU 
overhead. 

On the Mac side, we’ve identified Unity3D 
inconsistencies associated with different video card 
manufacturers. NVIDIA hardware using C-based OpenGL 
plug-in requires 1:1 ratio textures that must be of size 
other than 64x64 (or multiples thereof). The latter would 
cause Unity3D to consistently crash. Ironically, ATI setup 

Unity3D window 

Max window 



  
 

would accept textures of varying ratios as long as both 
dimensions were power of 2 (e.g. 256x256 or 64x32). The 
obvious workaround for both is to utilize texture sizes that 
conform to the said parameters. 

While both Max and Unity3D allow for easy building 
of standalone executables, the use of µ does not alleviate 
the production environment from a concurrent use of two 
applications. This however can be advantageous at times, 
particularly when the resulting simulation is too 
demanding to be run on a single computer. 

6. CONCLUSION AND FUTURE WORK 

Elemental has in many ways served as the test of µ’s 
ability to provide a stable and for the most part scalable 
way of integrating Max and Unity3D into a composite 
rapid prototyping tool. Lessons learned through this 
production cycle have given us a clear roadmap of what µ 
needs to address in its next iteration. 

Having encountered instabilities with the 
netsend/netreceive third-party Max externals we are 
looking into ways to either patch said objects or 
alternately integrate support for the jit.net.send-
formatted messaging. The latter would also alleviate the 
need to rely upon third-party externals, thus lowering the 
number of potential points of failure. In order to provide 
better scalability of importing dynamic textures into 
Unity3D we are currently looking into shared memory 
models that would circumvent the TCP/IP protocol and 
consequently lower CPU overhead, as well as compressed 
video streaming frameworks for a more efficient 
communication over network. Finally, while the existing 
messaging model is fully compatible with the Pd’s 
netsend/netreceive objects, the ability to import Pd 
textures is currently lacking. We will therefore look into 
support of Pd’s Gem library textures as well as interfacing 
with open-source alternatives to Unity3D, such as 
Blender3D [2] game engine. From an artistic perspective 
we look forward to exploring µ’s potential in performance 
and online collaboration contexts. 

7. OBTAINING µ 

µ is a GPL-licensed [8] open source toolkit freely 
downloadable from http://disis.music.vt.edu. 
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