

µ MAX-UNITY3D INTEROPERABILITY TOOLKIT

Ivica Ico Bukvic Ji-Sun Kim
Virginia Tech

Music, DISIS, CCTAD
ico@vt.edu

Virginia Tech
CS, CHCI, DISIS, CCTAD

hideaway@vt.edu

ABSTRACT

Object-oriented rapid prototyping tools geared towards
multimedia, such as Max/MSP/Jitter and Pd/Gem, serve as
a powerful foundation for efficient multimodal cross-
pollination and integration. Although both Max and Pd
support OpenGL, the lack of scalability, user-friendly 3D
editor, and physics engine makes them less desirable
solutions for the rapid development of complex
environments and physics simulations. Unity3D is a
powerful rapid 3D video game prototyping platform with
an integrated physics engine. Its audio capabilities,
however, are limited mainly to triggering and spatialization
of audio buffers. µ is a toolkit offering easy integration of
Max/PD with Unity3D, allowing for exchange of control
data, as well as importing of dynamic Jitter textures into
Unity3D. The former makes it particularly suitable for
efficient sonification of physics simulations. µ has been
utilized in Elemental, an interactive communal soundscape
installation (part of the Revo:oveR exhibit) allowing for
visitors’ motion (Max) to drive a physics engine (Unity3D)
and sonify ensuing data across a 12-channel ceiling-
mounted speaker array (Max).

1. INTRODUCTION

The increase in processing power and affordability of
computing devices has ushered a revolution of rapid
software prototyping tools. Through the use of a library of
shortcuts tailored towards a specific set of tasks, such
development environments offers unprecedented efficiency.
In the audio domain, arguably even the earliest tools, such
as the Music-N languages [7], have been designed with the
rapid prototyping concept in mind. More recently, a
number of the existing software, such as CMix [9] and
Csound [13] has been retrofitted to offer real-time
capabilities [6]. They have been further complemented by
visual programming environments, such as Pure Data (Pd)
[11] and Max [5].

One of the main challenges associated with the rapid
prototyping tools is that their efficiency quickly dissolves
once a task at hand delves beyond their primary focus (e.g.
an audio project that utilizes visuals). Over the years we’ve
seen two approaches to solving this predicament: software
such as Max and Pd embracing new functionality (Jitter

and Gem respectively) to expand their applicable domain,
and software [3] or libraries [15] offering interoperability
between two or more complementing prototyping
environments. Both approaches come with a set of
advantages and limitations: while inclusion of Jitter in Max
has paved way towards efficient integration of audio and
visuals in artistic and research contexts [4,14], its
implementation of OpenGL layer in particular lacks key
components of contemporary 3D engines, such as
scalability, support for animated content, user-friendly 3D
scene editing, and an efficient, easy to use physics engine.
In our recent research, the physics engine had proven a
particularly desirable component for a number of audio-
oriented scenarios. Equally, tools designed to bridge
different rapid prototyping environments commonly
require more complex setups (e.g. two applications
running concurrently on the same machine) whose
synchronization and load balancing at times can be
difficult to achieve, thus resulting in a greater number of
possible points of failure in a production environment.

Unity3D [12] is a powerful cross-platform gaming
engine integrated into a rapid prototyping environment. Its
versatility as a visual tool is however hampered by the use
of a relatively simple audio engine limited to triggering
and spatialization of preloaded audio buffers. While
working on a series of prototypes dealing with sonification
of moderately complex 3D physics simulations, we
identified a need for an efficient way to complement Max
with Unity3D and consequently generate a composite rapid
prototyping environment capable of efficiently tackling
said scenarios. This interest was further warranted by the
fact that Unity3D, like Max, is capable of generating Mac
and Windows standalone executables, thus minimizing
potential production-level overhead.

2. INTRODUCING µ

µ is a Max-Unity3D interoperability toolkit consisting of
C/C# code (Unity3D) and Max patches offering near
seamless integration between the two environments using
TCP/IP protocol. The 1.00 release relies upon the
netsend/netreceive [10] third-party Max externals for
bi-directional messaging and the jit.net.send Max
object for relaying texture data. µ offers following
features:

Max Unity3D
• Built-in functions using Max message formats,

offering Unity3D object search and basic
manipulation (move, rotate, and scale; relative
(lowercase) and absolute (uppercase)). For instance,
cube1 r 0 10 0 seeks object named cube1 and rotates
it 10 degrees around the y-axis.

• Custom object-specific functions (provided as
placeholders for custom code), such as changing
object color, transparency, animation, physical
properties, etc.

• Importing texture data as a 4-plane char matrix
(ARGB with 8 bits per color channel) and applying it
to a Unity3D object (Fig.1).

Figure 1. Max texture imported into Unity3D via µ.

Unity3D Max
• Custom object-specific data (provided as placeholders

for custom code), such as state, position, speed, etc.
This is particularly useful in 3D physics simulations
where object properties can be fed back into the audio
engine.

By coupling Max with Unity3D’s powerful API µ

aims to broaden rapid prototyping domain of both tools to
include a wide array scenarios, including physical
simulations (objects’ movement and interaction with other
assets and surfaces can be accompanied with sound cues
spatialized across an array of speakers), complementing
aural with complex 3D content (audio-visual installations),
games requiring advanced DSP features of Max and/or
where visuals are driven by audio (e.g. Audiosurf [1]), and
projects dealing with the cross-pollination of rich dynamic
aural and visual content.

3. PERFORMANCE

Given that one of µ’s primary goals was to complement
Max with Unity3D’s ability to efficiently manipulate large
number of assets and more importantly do so while

ensuring that all messages will arrive at their destination,
we settled for the TCP protocol. The UDP approach
proved too unwieldy for this purpose, requiring that each
network packet contain the state of all assets in the scene
to minimize sync issues associated with potential network
packet loss. Otherwise, critical one-time triggers contained
within a single UDP packet (e.g. a climactic moment in an
interactive installation driven by a single networked
command) could be entirely lost. From a texture streaming
perspective, considering that the jit.net.send object
supports only TCP protocol, such choice also
circumvented a need to design custom Max external. Thus,
even with a greater CPU and network overhead the TCP
approach proved a simpler solution, ensuring that each
packet would contain only the information of assets whose
states needed change (Max Unity3D) or had just changed
(Unity3D Max). The fact that the µ utilizes network
protocol has also allowed for the system to run on two or
more computers without requiring their co-location.

In order to assess the CPU overhead induced by µ we
compared average CPU utilization of both Max and
Unity3D at runtime with µ communication enabled and
suspended. No manual load balancing was employed and
since both clients were configured to run on a single CPU
core, no OS-specific multi-core optimizations had any
observable impact on their CPU load distribution. All tests
were run on a G5 with dual Intel Xeon 2.67GHz.

Figure 2. µ’s CPU overhead for Max and Unity3D.

The bi-directional communication of control data is
formatted as netsend/netreceive space-delimited
character array that is parsed into object names (String),
one-letter commands, integers, floats, and/or other relevant
data formats as defined in the custom commands. At 400
messages per second the measured CPU overhead of both
applications combined rarely exceeded 10% (Fig.2).

From a performance perspective, perhaps one of the
most interesting aspects of µ is its ability to relay texture
data in Jitter matrix format to Unity3D. An example
included with the toolkit offers mapping processed video
and/or webcam texture data onto a Unity3D asset, in this
case a cube (Fig.1). Although uncompressed texture data is
bandwidth intensive, tests with either both clients on the

same machine or on two separate machines on a local area
network using Gigabit Ethernet have shown stable
operation for textures up to 1024x1024 at 25 frames per
second albeit with a considerable CPU load (50+% per
application). 256x256 textures had a considerably lower
CPU footprint at 6-7% per application (Fig.2) with no
noticeable deterioration in image quality, making it an
adequate solution for common scenarios.

4. ELEMENTAL

Figure 3. Screenshot of the Elemental tech setup.

µ’s first real-world test was its integration in the
Elemental (Fig.3) interactive communal soundscape
installation (part of the Revo:oveR exhibit) that opened in
November 2008 at the new Taubman Museum of Art in
Roanoke, Virginia (USA). The piece uses series of
infrared (IR) LED floodlights in conjunction with a
homebrew ceiling-mounted IR webcam to concurrently
monitor motion of every visitor populating the exhibit
space. The resulting data is fed into a physics engine and
used to spawn 3D spheres within a virtual rendition of the
exhibit space, in locations corresponding to visitor’s real-
world position. Based on the visitors’ motion spheres are
assigned speed, trajectory, and inertia parameters and are
set in motion resembling simplified particle simulation of
water ripples. These meta-particles behave in many ways
as their real-world counterparts, reflecting from the walls
and other obstacles, as well as colliding with each other
until they exhaust all of their kinetic energy. The sphere
position and collision events are then forwarded to an
audio engine that sonifies them across a 12-channel 4x3
ceiling-mounted speaker array. The sphere position is
marked by a sound of a water ripple, its reflection against
the walls by a water splash, while its interaction with
other spheres is accompanied by an “aural fireworks”
consisting of an algorithmically-generated consonant
swarm of pitches with pizzicato-like envelopes. The
resulting interactive soundscape paints a picture of
communal dynamics in the exhibit space marking points

where trajectories of individuals may already have or are
about to converge.

Given the task at hand, µ proved an ideal solution for
cross-pollinating motion tracking via webcam (Max),
using visitor trajectories to run a physics simulation
through an efficient 3D engine (Unity3D), and finally
sonifying the resulting data across the 12-channel 4x3
ceiling-mounted speaker array (Max). While Unity3D’s
3D capabilities were secondary to the task, the fact we
could easily visualize and therefore troubleshoot the
system’s behaviour had proven instrumental in fostering
time-efficient development. The installation was
optimized to run on a single Intel Core 2 Duo 2.67GHz
machine non-stop for the duration of the exhibit
(approximately 5 months). Apart from a few occurrences
of seemingly random errors we traced down to the
netsend/netreceive external objects, the installation
has been running for several months without interruption.

5. LIMITATIONS

The CPU overhead for large textures is currently one of
µ’s greatest bottlenecks and in this respect µ is unable to
scale well, particularly in situations where multiple
dynamic video streams are to be used within the same 3D
scene. Alternatives include shared memory model that
would circumvent the TCP/IP stack overhead however
requiring that both clients run on the same system, and/or
the development of a framework for relaying a
compressed video stream, thus retaining the ability to
interface across the network.

As any bridging toolkit, µ is susceptible to
fluctuations and peculiarities of environments it interfaces
with. In our testing we’ve identified a number of
inconsistencies, many of which were traced down to the
video card driver issues.

Considering that Windows video drivers provide
much better support of Direct3D than OpenGL, Unity3D
on Windows platform by default relies upon the Direct3D.
Yet, the Unity3D’s C plug-in architecture as of version
2.1 does not provide means of exposing texture data
pointers to the DirectX library, making it difficult to
update game engine texture with networked data through
optimized plug-ins. Possible workarounds for Windows
users include running Unity3D in OpenGL mode and thus
dealing with possible visual artefacts due to inadequate
driver support, or manipulating texture updates using
Unity3D’s API at the expense of noticeably higher CPU
overhead.

On the Mac side, we’ve identified Unity3D
inconsistencies associated with different video card
manufacturers. NVIDIA hardware using C-based OpenGL
plug-in requires 1:1 ratio textures that must be of size
other than 64x64 (or multiples thereof). The latter would
cause Unity3D to consistently crash. Ironically, ATI setup

Unity3D window

Max window

would accept textures of varying ratios as long as both
dimensions were power of 2 (e.g. 256x256 or 64x32). The
obvious workaround for both is to utilize texture sizes that
conform to the said parameters.

While both Max and Unity3D allow for easy building
of standalone executables, the use of µ does not alleviate
the production environment from a concurrent use of two
applications. This however can be advantageous at times,
particularly when the resulting simulation is too
demanding to be run on a single computer.

6. CONCLUSION AND FUTURE WORK

Elemental has in many ways served as the test of µ’s
ability to provide a stable and for the most part scalable
way of integrating Max and Unity3D into a composite
rapid prototyping tool. Lessons learned through this
production cycle have given us a clear roadmap of what µ
needs to address in its next iteration.

Having encountered instabilities with the
netsend/netreceive third-party Max externals we are
looking into ways to either patch said objects or
alternately integrate support for the jit.net.send-
formatted messaging. The latter would also alleviate the
need to rely upon third-party externals, thus lowering the
number of potential points of failure. In order to provide
better scalability of importing dynamic textures into
Unity3D we are currently looking into shared memory
models that would circumvent the TCP/IP protocol and
consequently lower CPU overhead, as well as compressed
video streaming frameworks for a more efficient
communication over network. Finally, while the existing
messaging model is fully compatible with the Pd’s
netsend/netreceive objects, the ability to import Pd
textures is currently lacking. We will therefore look into
support of Pd’s Gem library textures as well as interfacing
with open-source alternatives to Unity3D, such as
Blender3D [2] game engine. From an artistic perspective
we look forward to exploring µ’s potential in performance
and online collaboration contexts.

7. OBTAINING µ

µ is a GPL-licensed [8] open source toolkit freely
downloadable from http://disis.music.vt.edu.

8. REFERENCES

[1] Audiosurf. “Audiosurf: Ride Your Music”,
http://www.audio-surf.com/. Last accessed Feb. 2009.

[2] Blender. “blender.org”, http://www.blender.org. Last
accessed Feb. 2009.

[3] Bukvic, I. “RTMix – towards a standardized
interactive electroacoustic art performance interface”,
Organised Sound, 7(3), 2002, pp. 275-286.

[4] Bukvic, I., Gracanin, D. and Quek, F. “Investigating
Artistic Potential of the Dream Interface: The Aural
Painting”, in Proceedings of the International
Computer Music Conference, Belfast, Northern
Ireland, 2008.

[5] Cycling’74. “Max/msp: A graphical programming
environment for music, audio, and multimedia”,
http://www.cycling74.com/products/maxmsp. Last
accessed Feb. 2009.

[6] Garton B. G. and Topper, D. “RTcmix - Using CMIX
in Real Time”, in Proceedings of the International
Computer Music Conference, Thessaloniki, Greece,
1997.

[7] Gerzso, A. “Paradigms and Computer Music”,
Leonardo Music Journal, 2(1), 1992, pp. 73-79.

[8] GNU General Public License. “The GNU General
Public License – GNU Project – Free Software
Foundation (FSF)”,
http://www.gnu.org/licenses/gpl.html. Last accessed Feb.
2009.

[9] Lansky, P. “The Architecture and Musical Logic of
Cmix”, in Proceedings of the International Computer
Music Conference, Glasgow, Scotland, 1990, pp. 91-
93.

[10] Matthes, O. “netsend and netreceive”,
http://www.akustische-kunst.org/maxmsp/. Last accessed
Feb. 2009.

[11] PD. “Pure Data”, http://puredata.info/. Last accessed
Feb. 2009.

[12] Unity. “Unity3D”, http://unity3d.com/. Last accessed
Feb. 2009.

[13] Vercoe, B. and Ellis, D. “Real-Time CSOUND:
Software synthesis with Sensing and Control”, in
Proceedings of the International Computer Music
Conference, Glasgow, Scotland, 1990, pp. 209-211.

[14] Wakefield, G., Overholt, D., Putnam, L., Smith, W.,
Novak, M. & Kuchera-Morin, J. “The Allobrain: An
Interactive, Stereographic, 3D Audio Immersive
Environment”, in Presentation at the CHI Workshop
on Sonic Interface Design, Florence, Italy, April 2008.

[15] Wright, M. and Freed, A. “Open Sound Control: A
New Protocol for Communicating with Sound
Synthesizers”, in Proceedings of the International
Computer Music Conference, Thessaloniki, Greece,
1997.

